Skip to Content

Бета-коэффициент: для чего нужен и как его рассчитать

Для расчета мы выберем акции с потенциально бОльшим и потенциально меньшим коэффициентом бета. Данный показатель не только помогает оценить уровень инвестиционного риска конкретного актива, но также может использоваться для сравнения разных активов и создания сбалансированного инвестиционного портфеля. Каждый торговый день по окончании основной торговой сессии МосБиржа также рассчитывает коэффициент бета, следуя методике Банка России.

  1. Систематические риски представляют собой риски, которые влияют на весь рынок.
  2. Бета-коэффициент акции — это показатель волатильности акции по отношению к рынку в целом.
  3. Бета-коэффициент также менее полезен для долгосрочных инвестиций, так как волатильность цен на акции может значительно изменяться из года в год в зависимости от этапа развития компании и других факторов.
  4. Систематический риск – это риск, который нельзя радикально снизить увеличением количества активов в портфеле, т.е.
  5. Доходность по безрисковому активу, на практике, берется как доходность по государственным ценным бумагам ГКО, ОФЗ.

Как финансовый аналитик оценивает бета-коэффициент для непубличной компании или проекта?

Бета-коэффициент – это показатель, характеризующий изменение курса конкретного фондового инструмента (ценной бумаги) по отношению к динамике сводного индекса всего фондового рынка. Формула отражает одностороннюю бету, с предположением, что инвесторы рассматривают риск только как отклонение от среднерыночной доходности вниз. В отличие от модели Бава-Линдсберга за минимальный уровень риска брался уровень среднерыночной доходности. Например, у инвестора есть портфель из 4 акций, он пытается оценить возможный доход и риски, чтобы принять решение о дальнейших вложениях. Используя представленные формулы либо специальный сервис, он получает такие данные (для простоты можно предположить, что доля каждого актива в портфеле одинаковая, т.е. 25%). Когда финансовый аналитик использует модель CAPM для оценки стоимости собственного капитала (затрат на капитал), он должен оценить бета-коэффициент.

Как инвесторы используют бета-коэффициент

Расчет β-коэффициента также требует наличия самих статистических данных по доходности и по рискам, влияющим на конкретный вид операционной деятельности компании. Поэтому модель может быть применена предпринимателями уже занимающимися бизнесом и только для тех видов операционной деятельности, которые предполагается ими развивать или расширять. Нахождение β-коэффициента не представляется возможным для начинающих предпринимателей, открывающих свой бизнес. То есть этот метод не смогут применить фирмы, у которых нет достаточной статистики для расчета своего β-коэффициента, а также не имеющие возможности найти предприятие-аналог, чей β-коэффициент они могли бы использовать в собственных расчетах». Для определения ставки дисконтирования таким компаниям следует использовать иные методы расчета или усовершенствовать методику в своих нуждах [3, С.

CFA – Стоимость привилегированных акций как компонент стоимости капитала

Коэффициент бета, равный 1, указывает на то, что колебания цен на акции идеально коррелируют с колебаниями рыночного индекса. Бета больше 1 указывает на то, что акции более волатильны, чем рынок, в то время как бета меньше 1 указывает на то, что акции менее волатильны, чем рынок. В калькуляторе заполняются поля с датами торговых периодов за последние 3 года, значения дневных цен закрытия по акции за последние 3 года, а также значения фондового индекса на конец торговой сессии за последние 3 года. Для того чтобы коэффициент бета отражал именно долгосрочные инвестиционные тенденции в акциях, мы должны прибегать к его расчету за более длительные горизонты от 3-х лет.

Пример расчета коэффициента бета в Excel

Рассмотрим 3 стратегии инвестирования, ключевые факторы оценки и типы акций по источникам роста. Коэффициент бета – это статистический коэффициент, который характеризует движение отдельной акции относительно всего рынка в целом. 4) Аналогичным образом преобразуйте значения цены индекса в доходности. Коэффициент бета (по англ. beta) – единственный показатель в модели CAPM, который зависит от специфики отдельной рассматриваемой компании. Расчет и анализ бета-коэффициента производится в программе ФинЭкАнализ в блоке Расчет средневзвешенной стоимости капитала.

Этот коэффициент используется в основном для измерения уровня риска вложений в отдельные ценные бумаги в сравнении с уровнем систематического (рыночного) риска. Чем больше значение бета-коэффициента по рассматриваемой ценной бумаге, тем выше уровень неустойчивости доходов по ней. Бета-коэффициент является важным инструментом анализа финансовых рынков и помогает инвесторам принимать обоснованные решения по распределению своих инвестиционных портфелей. Он позволяет оценить, насколько ценная бумага реагирует на изменения в целом фондовом рынке, и выявить, какая часть изменений связана с общей динамикой рынка, а какая – с факторами, специфическими для конкретной ценной бумаги. Бета-коэффициент можно рассчитать статистическими методами на основе наблюдения за изменением среднерыночной доходности и доходности конкретного актива за достаточно длительный период.

Расчёт коэффициента[править править код]

Таким образом, можно рассчитать коэффициент бета относительно рынка. Поскольку расчет бета-коэффициента – достаточно трудоемкое занятие, сегодня это проще всего сделать с помощью Excel. В таблице ниже для примера взяты данные по торгам с 1 ноября 2021 года, однако на практике лучше использовать более длительный период, хотя бы от 100 торговых дней. Ожидаемая доходность рыночного портфеля (для простоты расчета чаще всего берется доходность индекса). Иными словами, рассчитанные подобным образом значения коэффициента бета, отражают лишь локальные и очень краткосрочные рыночные тенденции, которые не отражают в полной мере заложенных фундаментальных принципов в данный коэффициент.

Бета-коэффициент оценивает меру чувствительности одной переменной (например, доходности конкретной акции) к другой переменной (среднерыночной доходности или доходности портфеля). Бета-коэффициент (бета-фактор) в модели CAPM, используемый для расчета ставки дисконтирования применительно https://prostoforex.com/ к инвестициям в ценные бумаги – это показатель, рассчитываемый для ценной бумаги или портфеля ценных бумаг. Является мерой рыночного риска, отражая изменчивость доходности ценной бумаги (портфеля) по отношению к доходности портфеля (рынка) в среднем (среднерыночного портфеля).

Оценка бета-коэффициента обычно связана со множеством вариантов и сложностей. Аналогичным образом, акция с высоким бета-коэффициентом, которая волатильна в основном в направлении вверх, увеличит риск портфеля, но может увеличить и прибыль. Инвесторы, которые используют бета-коэффициент для оценки акции, также оценивают ее с других точек зрения, таких как фундаментальные или технические факторы, прежде чем предположить, что она добавит или уберет риск из портфеля. Инвестор использует бета-коэффициент, чтобы оценить, насколько акция добавляет риска портфелю. Хотя акция, которая очень мало отклоняется от рынка, не добавляет большого риска портфелю, она также не увеличивает потенциал получения более высокой доходности. Бета демистифицирована В этом разделе мы раскроем сложность бета-версии.

Компания владеет активами в различных отраслях российской экономики, включая телекоммуникации, медицину, лесную промышленность, ретейл, строительство и другие сферы. Среди активов акции МТС, Медси, Segezha Group, Ozon, Etalon Group и другие. Вычисления по формуле линейной регрессии вручную времязатратны для частного инвестора, квадрат ганна и требуют специализированных знаний, поэтому инвесторы обычно используют инвестиционные сервисы. Инвестиции в реальные активы связаны с созданием новой или развитием уже существующей операционной деятельности предприятия. Напомним, что под операционной деятельностью компании понимается ее основная деятельность.

В целом способы по своей сути одинаковые, просто во втором случае мы получаем дополнительные данные, которые будут интересны разве что тем, что хорошо разбирается в статистике. Приведенные данные позволяют оценить достоверность выявленной зависимости, статистическую значимость результата. На зависимость между доходностями акции и рыночного портфеля можно смотреть как на линейную регрессию. Поскольку, как сказано выше, доходность определяется движением котировок, под изменением доходности следует понимать изменение котировок.